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ABSTRACT
In recent years, the rapid growth in technology has increased

the opportunity for longitudinal human behavioral studies. Rich
multimodal data, from wearables like Fitbit, online social networks,
mobile phones etc. can be collected in natural environments. Uncov-
ering the underlying low-dimensional structure of noisy multi-way
data in an unsupervised setting is a challenging problem. Tensor
factorization has been successful in extracting the interconnected
low-dimensional descriptions of multi-way data. In this paper, we
apply non-negative tensor factorization on a real-word wearable
sensor data, StudentLife, to find latent temporal factors and group
of similar individuals. Meta data is available for the semester sched-
ule, as well as the individuals’ performance and personality. We
demonstrate that non-negative tensor factorization can success-
fully discover clusters of individuals who exhibit higher academic
performance, as well as those who frequently engage in leisure
activities. The recovered latent temporal patterns associated with
these groups are validated against ground truth data to demonstrate
the accuracy of our framework.
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1 INTRODUCTION
Behavioral data, collected from a variety of sources, has been

used to understand human affect, wellbeing, social relationships,
performance and decision making progress. Existing techniques
such as interviews and questionnaires are inaccurate, expensive and
laborious to administer. Fortunately, today’s densely instrumented
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world offers tremendous opportunities for continuous acquisition
and analysis of multi-variant time series data that provides a multi-
modal, spatiotemporal characterization of an individual’s actions.

Efficiently coupling such rich sensor data with fusion and pre-
dictive modeling techniques can provide continuous, personalized,
contextual, and insightful assessments of individual performance.
StudentLife is a 10-week study on 48 Dartmouth undergraduate
and graduate students using passive and mobile sensor data to in-
fer wellbeing, academic performance and behavioral trends [21].
The Dartmouth College research team was able to predict GPA us-
ing activity, conversational interaction, mobility, and self-reported
emotion and stress data over the semester. SNAPSHOT is a 30-day
study on MIT undergraduates using mobile sensors and surveys
to understand sleep, social interactions, affect, performance, stress
and health [19]. RealityMining is a 9-month study on 75 MIT Media
Laboratory students, using mobile sensor data to track the social
interactions and networkings [11]. The friends-and-families study
collects data from 130 adult members of a young family community
to study fitness intervention and social incentives [2].

These data sources are often collected from small set of partic-
ipants in natural condition, continuously and over long periods
of time. Therefore, they are potentially heterogeneous, sparse, in
high dimensional regime and have systematically missing values.
Tensor factorization can tolerate missing values [1, 6, 8] and has
been used popularly in multi-way relational data, for example clus-
tering and temporal structure discovery in dynamic networks [20].
In this paper we demonstrate non-negative tensor factorization
(NTF) can reveal the low-dimensional patterns of noisy heteroge-
neous wearable sensor data, while preserving the interpretability
[5]. We are mainly interested in StudentLife dataset as it has a
very rich set of time series collected from a cohort of students via
their smartphones, plus wide range of meta data available, such
as workloads and mental health state. Ref. [22] builds a matrix
representation of this longitudinal data by extracting different sta-
tistics from variables across the time dimension to infer students’
wellbeing and performance. Pattern of activity and sociability be-
havior has been explored in [12], by aggregating variables over the
individuals dimension. We would like to extract the interconnected
low-dimensional latent factors, without aggregation of data over
any dimension. Here we will demonstrate the strength of tensor
factorization for in situ human behavior research through finding
the hidden structures and validate them against ground truth. First
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Table 1: Table of Symbols.

Symbol Definition
X,X, x, x Tensor, matrix, column vector, scaler
x ∈ RI×1 Definition of an I-dimensional vector

◦ Outer product
| |.| | Frobenius norm

we evaluate the variables and individuals associated with each tem-
poral latent factor. Then we compare the distribution of students
who are strongly associated with each component, across different
meta data, such as GPA, personality traits and affect.

Contributions
In this article we propose the following ideas:
• Unsupervised extraction of low-dimensional structure of
wearable sensor data

• Discovering clusters of individuals who exhibit higher aca-
demic performance, as well as those who frequently engage
in leisure activities

• Validation of recovered latent temporal patterns associated
with these groups against ground truth data

2 METHODOLOGY
2.1 Preliminaries

A wide range of real-world datasets such as recommendation
system, multivariate time series and video streams are multi-way. A
mathematical representation of such data is tensor, X ∈ RI1×...×IN .
One approach to work with this multi-way data is matrixizing or
flattening and applying conventional supervised/unsupervised tech-
niques, but we may loose structural information. Tensors are pow-
erful tools to extract complex structures from the high-dimensional
multi-way data in an unsupervised approach. In this section we
discuss the model that we will use to analyze a 3-way longitudinal
human behavioral data. For I individuals, with J variables for a du-
ration of K time frames, tensor X ∈ RI×J×K will be created. Entry
xi jk of this tensor corresponds to the ith person in the jth variable
at the kth time unit. Table 1 summarizes our notation throughout
this paper.

2.2 Non-negative tensor decomposition
The extraction of meaningful patterns of behavior can be carried

out by taking full advantage of tensor decomposition techniques.
Let us consider a dataset composed by individuals, whose daily
behavior (walking, running, talking, etc. during the day) has been
recorded over time. To uncover groups of individuals with similar
correlated trajectories, identification of lower-dimensional factors
is required. Once the dataset is represented in the tensor form, we
can perform tensor decomposition to discover the hidden lower
dimension structure of the data.

Here, we use the CANDECOMP/PARAFAC decomposition [4,
13], which will decompose the tensor X ∈ RI×J×K into sum of
rank-one tensors, called components, Figure 1. Also we add the

non-negativity constraints to each factor matrix in order to find
interpretable components.

X ≈ X̂ =
R∑
r=1

λrur ◦ vr ◦ tr

where λr are the values of the tensor core L = diaд(Λ), and
the outer product ur o vr o tr corresponds to the r th component
of rank-R estimation. This decomposition can be written as the
following optimization problem:

min
λ,U,V,T

| |X − X̂| |

s.t., λ,U,V,T ≥ 0

U,V,T are the factor matrices with their columns containing
rank-1 factors, ur , vr , and tr , respectively. Imposing the non-negativity
constraints makes the factorization results interpretable.

3 CASE STUDY
In this paper we use StudentLife dataset, a large publicly available

dataset, tracking student performance, wellbeing and physiological
state [17]. StudentLife is a 10-week study conducted during 2013
spring semester on 48 Dartmouth students (30 undergraduate and
18 graduate students). The dataset can be divided into four sections:
smartphone sensors, ecological momentary assessments (EMAs),
psychometrics and academic performances. From raw sensor data,
activity (stationary, walk, run and unknown), audio (silence, voice,
noise and unknown), and conversation has been inferred. Psycho-
metrics have pre-post Big Five personality [14], flourishing scale [9],
UCLA loneliness scale [18], positive and negative affect schedule
(PANAS) [23], perceived stress scale (PSS) [7], PHQ-9 depression
scale [16], Pittsburgh sleep quality index (PSQI) [3] and VR-12 heath
scale [15]. Academic performances have class schedule, number of
deadlines, overall GPA, online class forum Piazza participation, and
more. We will not use EMAs in our modeling as we are interested
in learning from passively recorded data and we keep survey and
EMAs only as ground truth for validation task. For psychometrics
surveys, there are large amount of missing pre and post survey
scores. We will use the post survey score if it is available otherwise
pre survey score is used as replacement. If both scores are missing
for a survey, we will drop that users when using that survey.

3.1 Feature Extraction
Our goal in this paper is understanding whether we can find the

low-dimensional structure of daily life from wearable devices, with-
out using any meta data such as self-reported EMAs or day of the
week. Therefore, we only use the smartphone sensor variables in
our feature set. Each time unit comprise one day worth of data, and
is divided into four time bins, bedtime (midnight-6 am), morning (6
am-12 pm), afternoon (12 pm-6 pm), and evening (6 pm-midnight).
We extract duration (minutes) of running, walking, stationary, si-
lence, voice, noise, and dark, per time-bin in each day. Frequency of
each behavior and number of changes in each behavior (e.g. from
walking to running) for each time-bin has been also captured. From
GPS and WiFi, number of unique locations visited, and from Blue-
tooth number of unique near by devices per time-bin are added to
the variable set. We normalize all the variables to have the same
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Figure 1: The CANDECOMP/PARAFAC decomposition.

Figure 2: Core consistency curve.

range [0, 1] to avoid variables with large values (e.g. duration in
minutes) dominate the analysis. At the end, we organize our data
as tensor X with I = 48 individuals, J = 85 variables and K = 66
days. Only 5% of the tensor is missing, which we imputed by filling
them with the mean value.

4 DISCOVERING PATTERN OF TEMPORAL
BEHAVIOR

In this section we employ non-negative tensor decomposition to
find the hidden structure in the data. However, we need to find and
fixate the correct number of components R. To ensure of selecting
the best approximation, we change the number of components
R = 1, 2, .., 9 and report the mean and standard deviation of the
core consistency scores for each R, Figure 2. Negative values are
imputed to zero and no standard deviation is reported for them. We
choose rankR = 3, the number of components that yields the largest
change in the slope of the core consistency curve. After fixing the
number of components, we then select the best approximation after
a set of random initializations, by choosing the one corresponding
to the maximum value of core consistency for the selected rank
R = 3.

Figure 4 presents the extracted latent temporal components.
We will use the meta data available in StudentLife dataset to find
the topic of each latent component discovered, Figure 3 [10]. This
curves are generated based on self-reported values by students and
averaged across all students each day. The first component follows
the same pattern as studying and increases over the semester, Fig-
ure 4a. The second component should be related to partying, as it
decreases after the first week of semester and there is a jump around

Figure 3: Students deadline, party and study trends over the
semester, obtained from StudenLife website [10]. All curves
are normalized to one.

the Green Key weekend (Figure 4b, light green box). The third com-
ponent follows the pattern of deadlines. The light green box in
Figure 4c shows the duration with higher number of deadlines from
meta data, Figure3.

4.1 Structural Validation
A nice aspect of the dataset we use is the existence of ground

truth available from known semester schedules, students’ course
load and self-reported values. Here, we examine our hypothesis that
extracted components represent studying, partying, and deadline
topics. Figure 5 shows stronger correlation of component 3 with
stationary, silence and number of locations visited, which follows
the pattern of working on homework deadlines for students. More
silence and darkness in the morning, and stronger membership of
conversation during afternoon and evening, supports the hypoth-
esis of considering topic "Party" for component 2. Frequency of
capturing voice in the evening and number of changes of audio
status in afternoon have higher weights in component 2 compare
to the other two components. Also we looked at the distribution
of top 25% individuals who have the highest association with each
component across different existing meta data, such as personality
and performance. Note that all students have some degree of asso-
ciation in all components and one student can fall among top 25%
individuals in more than one component. Kernel Density Estima-
tion (KDE) for the distribution of extraversion scores for students
associated to each component is demonstrated in Figure 6a. Top
members of component 2 have significantly bigger mean value than
component 1 (p-value=0.01 based on t-test). People who score high
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(a) 1st component: Studying pattern. (b) 2nd component: Partying pattern. (c) 3rd component: Deadline pattern.

Figure 4: Discovered temporal structure over the semester.

Figure 5: Membership of variables in each of the three components; we sort the variables based on their weights and create
the top-weighted variable set in each component. Variables presented here are among the top-weighted ones at least in one of
the components.

in extraversion personality trait, enjoy being with others, partici-
pating in social gatherings and partying. This observation is along
with our hypothesis which component 2 reflect partying, Figure4b.

Running the ANOVA test for all the other four personality traits
(Openness, Conscientiousness, Agreeableness, Neuroticism), the
null hypothesis of equal mean values for the three sample sets is
not rejected. Component 3 mostly matches the deadline pattern in
Figure 3. We looked at the average number of deadlines over 10
weeks for the top members in each component and we observed
students with higher weight in component 3 have more deadlines
than top members of components 1 (p-value = 0.06).

Looking at the students’ performance, it is also very interesting
that the individuals involved in component 2 have lower GPA than
the other two components, (p-value = 0.008), Figure 6b. Based on the
average self-reported relaxing by students over the semester, top
member of component 1 have significantly less relaxing duration
and at the same time, they have the highest contribution in online
class forum Piazza participation. These students have significantly
more positive affect score compare to group of students associated
in the other two components (p-value = 0.03), Figure 6c.

5 CONCLUSIONS AND FUTUREWORK
Rich multimodal data collected from wearables devices (e.g. Fit-

bit), mobile phones, online social networks, etc. become increasingly
available to reconstruct digital trails and study human behavior.
In this paper, we adopt the StudentLife dataset collected over the
course of 10 weeks from 48 Dartmouth undergraduate and grad-
uate students using passive and mobile sensors, with the goal of
inferring wellbeing, academic performance, and behavioral trends.
We employ the unsupervised learning framework based on non-
negative tensor decomposition to find groups of individuals with
similar behavior. This type of decomposition can uncover latent
temporal structures such as studying and partying over the semes-
ter. By applying this frameworkwe could discover traits like that the
group of students associated with Component 2 (leisure activities)
have the highest average scores of self-reported extroversion, while
students associated with Component 1 (studying factor) have the
highest average GPA, lower relax-time and higher positive affect.
Next, we plan to implement supervised predictions of individuals’
performance and personality directly from tensors, instead of map-
ping the tensors to matrices and using conventional supervised
methods designed for two dimensional data.
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(a) (b) (c)

Figure 6: Kernel Density Estimation (KDE) computed on the values related to each personality for top 25% individuals in each
component.
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